Discrete Embeddings for Lagrangian and Hamiltonian Systems
نویسندگان
چکیده
منابع مشابه
Discrete Dirac Structures and Implicit Discrete Lagrangian and Hamiltonian Systems
We present discrete analogues of Dirac structures and the Tulczyjew’s triple by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving discrete analogues of implicit Lagrangian and Hamiltonian systems. In particular, this yields implicit nonholonomic Lagrangian and Hamiltonian integrators. We also in...
متن کاملVariational Discrete Dirac Mechanics—implicit Discrete Lagrangian and Hamiltonian Systems
We construct discrete analogues of Tulczyjew’s triple and induced Dirac structures by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving implicit discrete Lagrangian and Hamiltonian systems, while incorporating discrete Dirac constraints. In particular, this yields implicit nonholonomic Lagrangia...
متن کاملDiscrete Lagrangian Systems And
We show that the continuous limit of a wide natural class of the right-invariant discrete Lagrangian systems on the Virasoro group gives the family of integrable PDE's containing Camassa-Holm, Hunter-Saxton and Korteweg-de Vries equations. This family has been recently derived by Khesin and Misio lek as Euler equations on the Virasoro algebra for H 1 α,β-metrics. Our result demonstrates a unive...
متن کاملDilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کاملDiscrete port-Hamiltonian systems
Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling at the discrete level itself. One of the goals of this paper is to model port-Hamiltonian systems...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Mathematica Vietnamica
سال: 2018
ISSN: 0251-4184,2315-4144
DOI: 10.1007/s40306-018-0257-0